数字孪生技术概念起源于美国密歇根大学教授迈克尔·格里夫斯教授在2002年提出的“产品生命周期管理”概念。该概念包含了数字孪生技术概念的全部要素,即现实空间、虚拟空间、由现实空间向虚拟空间传递的数据、由虚拟空间向现实空间传递的信息。2010年,美国家航空航天局发布报告《建模、仿真、信息技术和处理路线图》正式提出数字孪生概念。美国航空航天学会专家将数字孪生技术定义为:“模拟单个物理资产或一组物理资产的结构、背景和行为的一组虚拟信息构造,在其整个生命周期中使用来自物理孪生的数据进行动态更新,并为实现价值提供决策所需的信息。”
数字孪生技术有两种类型,即数字孪生原型和数字孪生实体。数字孪生原型描述了原型物理实体,是思维层面的具化;数字孪生实体描述了特定物理实体,是现实层面的具化。数字孪生聚合是所有数字孪生实体的集合。数字孪生环境是一个集成的、多领域的物理应用空间,可根据不同目的应用数字孪生技术。综上所述,数字孪生技术是在虚拟空间中构建现实物理实体的数字副本,该物理实体既可以是非生命实体也可以是生命实体。数字孪生技术具有实时性、双向性和贯穿性三个特点。
以美国为代表的世界军事大国已将数字孪生技术视为“改变战争游戏规则”的颠覆性技术。美海军领导人曾表示:“数字孪生体不是有趣的假设,而是当务之急”。数字孪生技术在军事领域的应用已经是大势所趋。根据数字孪生技术的本质和特点,从物、环境和人三个层面总结概括该技术在智能化战争中的应用场景。
数字孪生技术可应用于作战平台的研发、生产和维护。装甲车、舰艇、飞机、航天器等大型作战平台结构复杂、零部件繁多、测试过程较慢,导致研发周期较长。数字孪生技术的应用可以极大缩短研发周期,降低研发成本,快速研制出满足现实作战需要的新型作战平台和作战系统。这是因为相较于传统作战平台先生产出物理原型再测试,直至产品满足需求的闭合循环研发过程,数字孪生技术在设计阶段就开始进行各种测试。同时,通过传感器搜集初始原型数据,在决定更改物理原型之前,在数字化环境中模拟测试各种场景,从而达到创建最少物理模型、最快生产出合适产品的目的。例如波音公司在波音777客机研发的整个过程全靠数字仿真推演,随后直接量产。据报道,数字孪生技术帮助波音公司减少50%的返工量,有效缩短40%的研发周期。随着大数据的兴起以及计算能力的提升,数字孪生体可以显著改善作战平台的维护效率。平时,数字孪生体可以通过日常按需维修减少装备进厂维护的次数,从而降低维护的资金成本和时间成本。战时,技术人员可以在数字化空间及时了解装备情况,确定故障源,远程组织抢救抢修,从而快速恢复作战能力。据报道,美军在2020年夏天就开始拆除空军的B-1轰炸机,以制造数字孪生机,还计划创建F-35战斗机的数字孪生体,以预测飞机的性能、预期寿命和故障情况。美空军于2022年3月21日宣布,已在弗罗里达州廷德尔空军基地启用数字孪生全息实验室,以数字模型形式展示空军基地,使飞行员能够在虚拟环境中测试技术。数字孪生技术最先应用于航天航空装备的研发,未来将融入陆、海、空、天、电、网各领域装备的研发、生产与维护。
数字孪生技术的应用将贯穿智能化战争全领域。未来的智能化战争将在由陆、海、空、天、电、网组成的全领域进行联合作战。联合全域作战要求以任务为中心,打破传统军(兵)种之间的界限,根据作战需要快速整合作战力量。联合全域作战的核心是联合全域指挥控制,联合全域指挥控制的优劣直接决定了联合全域作战的实现和成败。数字孪生技术的应用没有物理域限制,理论上来说可以创建任何物理实体和系统的虚拟数字模型。数字孪生体的真正力量是在物理世界和数字世界之间提供近乎实时的全面联系的能力。
数字孪生技术是物理对象或系统在其整个生命周期中的动态虚拟表示,通过使用实时数据来实现理解、学习和判断。数字孪生技术应用于智能化战争的本质是建立人与战场连接的虚拟数字空间介质,实现决策与行动的快速交互。军事数字孪生体在节省资金、提高能力和作战效率方面具有巨大的潜力,是军事技术发展的必然趋势。军事数字孪生技术在带来巨大作战优势的同时也伴随着一定的风险。数字孪生体很容易成为对手攻击的目标,因此数字孪生技术应与新的安全模型一起发展,防止不安全的数据源和网络带来的风险。数字孪生体越大、能力越强,风险就越大。因此数字孪生体的整个网络,物理资产和所有数据都必须在预定的安全级别上运行,才能实现利益最大化、风险最小化。数字孪生技术对于战争的颠覆性影响正在逐渐展现,美国防领域数字孪生技术的应用已处于世界领先水平,其他国家应该奋起直追,抓住数字孪生技术风口,为应对智能化战争做好准备。